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n open research question is how to define a useful metric on the
pecial Euclidean group SE�n� with respect to: (1) the choice of
oordinate frames and (2) the units used to measure linear and
ngular distances that is useful for the synthesis and analysis of
echanical systems. We discuss a technique for approximating

lements of SE�n� with elements of the special orthogonal group
O�n+1�. This technique is based on using the singular value
ecomposition (SVD) and the polar decompositions (PD) of the
omogeneous transform representation of the elements of SE�n�.
he embedding of the elements of SE�n� into SO�n+1� yields
yperdimensional rotations that approximate the rigid-body dis-
lacements. The bi-invariant metric on SO�n+1� is then used to
easure the distance between any two displacements. The result is
left invariant PD based metric on SE�n�.
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Introduction
Simply stated, a metric measures the distance between two

oints in a set. There exist numerous useful metrics for defining
he distance between two points in Euclidean space; however,
efining similar metrics for determining the distance between two
ocations of a finite rigid body is still an area of ongoing research.
n Ref. �1� Kazerounian and Rastegar define object norms that
epend upon the volume or shape of the rigid-body being dis-
laced. Geometrically motivated metrics that depend upon the dis-
lacement of the rigid body rather than its shape were proposed
y Refs. �2,3�. Gupta investigates Euclidean error measures on
igid-body displacements �4�. In Ref. �5� a Lie group theory ap-
roach is taken and a left-invariant metric parameterized by a
haracteristic length is presented. Lin and Burdick present formal
nd practical conditions for kinematic metrics �6�. Moreover, in
ef. �7� addresses the inherent pitfalls when defining rigid-body
isplacement metrics. Fanghella and Galletti present metric rela-
ions based upon the closure equations associated with the kine-

atic chain producing the motion �8�. A local metric based on an
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optimized local mapping of the study of quadric via stereographic
projection was proposed in Ref. �9�. Chirikjian presents convolu-
tion metrics on the group of rigid-body motions �10� and in Ref.
�11� he compares and contrasts some metric methods. In Ref. �12�
Belta and Kumar present a SVD based rigid-body motion interpo-
lation.

In the cases of two locations of a finite rigid body in either
SE�3� �spatial locations� or SE�2� �planar locations� any �Rie-
mannian� metric used to measure the distance between the loca-
tions yields a result which depends upon the chosen reference
frames �see Refs. �5,7��. However, for the specific case of orient-
ing a finite rigid body in SO�n� bi-invariant metrics do exist. For
example, Ravani and Roth �13� defined the distance between two
orientations of a rigid body in space as the magnitude of the
difference between the associated quaternions; a proof that this
metric is bi-invariant may be found in Ref. �2�. One useful and
easily evaluated metric d on SO�n� follows. Given two elements
�A1� and �A2� of SO�n� we can define a metric using the Frobenius
norm as

d = ��I� − �A2��A1�T�F �1�

It is straightforward to verify that this is a valid metric on SO�n�,
see Ref. �14�.

In Ref. �2� Larochelle and McCarthy proposed an algorithm for
approximating displacements in SE�2� with orientations in SO�3�.
By building upon the work of Ravani and Roth �13�, they arrived
at a metric for planar locations in which the error induced by the
spherical approximation is on the order of 1 /R2, where R is the
radius of the approximating sphere. Their algorithm is based upon
an algebraic formulation which utilizes Taylor series expansions
of sine�� and cosine�� terms in homogeneous transforms �15�. Et-
zel and McCarthy �16� later extended this work to spatial dis-
placements by using orientations in SO�4� to approximate loca-
tions in SE�3�.

This paper discusses an efficient alternative methodology for
defining a metric on a finite set of elements in SE�n�. Here, the
underlying geometrical motivations are the same—to approximate
displacements with hyperspherical rotations. However, we utilize
the polar decomposition to yield hyperspherical orientations that
approximate planar and spatial finite displacements. The work re-
ported here is built upon ideas found in Refs. �17,18,15,19�.

2 The SVD-Based Embedding
The SVD-based approach, analogous to the works summarized

above, also uses hyperdimensional rotations to approximate dis-
placements. However, this technique uses products derived from
the SVD of the homogeneous transform to realize the embedding
of SE�n−1� into SO�n� �20�.

Consider the space of n�n matrices as shown in Fig. 1. Let �T�
be a n�n homogeneous transform that represents an element of
SE�n−1�. Note that �T� defines a point in Rn2

. �A� is the desired
element of SO�n� nearest �T� when it lies in a direction orthogonal
to the tangent plane to SO�n� at �A�. The following theorem, based
upon related works by Hanson and Norris �21�, provides the foun-
dation for the embedding,

Theorem 2.1. Given any n�n matrix �T�, the closest element
of SO(n) is given by: �A�= �U��V�T where �T�= �U�
��diag�s1 ,s2 , . . . ,sn���V�T is the SVD of �T�.

Shoemake and Duff �19� prove that matrix �A� satisfies the
following optimization problem: Minimize: ��A�− �T��F

2 subject to:
�A�T�A�− �I�= �0�, where ��A�− �T��F

2 =�i,j�aij − tij�2 is used to de-
note the Frobenius norm. Since �A� minimizes the Frobenius norm

in Rn2
, it is the element of SO�n� that lies in a direction orthogonal

to the tangent plane of SO�n� at �R�. Hence, �A� is the closest
element of SO�n� to �T�. Moreover, for full-rank matrices the

SVD is well defined and unique. We now restate Theorem 2.1
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ith respect to the desired SVD based embedding of SE�n−1�
nto SO�n�.

Theorem 2.2. For �T��SE�n−1� and �T�= �U�
�diag�s1 ,s2 , . . . ,sn���V�T, if �A�= �U��V�T, then �A� is the unique

lement of SO�n� nearest �T�.
Recall that �T�, the homogenous representation of SE�n�, is of

ull rank �22� and, therefore, �A� exists, is well defined, and
nique.

The PD-Based Embedding
The polar decomposition �PD� though perhaps less known than

he SVD, is quite powerful and actually provides the foundation
or the SVD �23�. Cauchy’s polar decomposition theorem states
hat “a nonsingular matrix equals an orthogonal matrix either pre-
r post-multiplied by a positive definite symmetric matrix” �24�.
ith respect to our application, for �T�� SE�n−1� its PD is �T�
�P��Q�, where �P� and �Q� are n�n matrices such that �P� is
rthogonal and �Q� is positive definite and symmetric. Recalling
he properties of the SVD, the decomposition of �T� yields �U�

�diag�s1 ,s2 , . . . ,sn−1���V�T, where matrices �U� and �V� are or-
hogonal and matrix �diag�s1 ,s2 , . . . ,sn−1�� is positive definite and
ymmetric. Moreover, it is known that for full rank square matri-
es the PD and the SVD are related by: �P�= �U��V�T and �Q�
�V��diag�s1 ,s2 , . . . ,sn−1���V�T �23�. Hence, for �A�= �U��V�T we
ave �A� � �P� and conclude that the polar decomposition yields
he same element of SO�n�. We now restate Theorem 2.2 with
espect to the desired PD based embedding of SE�n−1� onto
O�n�.
Theorem 3.1. If �T��SE�n−1� and �P� & �Q�, are the PD of

T� such that �T�= �P��Q�, then �P� is the unique element of SO(n)
earest �T�.

Dubrulle �25� provides an algorithm for computing the PD that
roduces monotonic convergence in the Frobenius norm that “. . .
enerally delivers an IEEE double-precision solution in �10 or
ewer steps.”

Implementation of the Metric
The PD-based embedding of SE�n−1� into SO�n� reviewed

bove could be used for the systematic embedding of elements of
E�n−1� into SO�n�. However, to yield a useful metric for a finite
et of displacements appropriate for design, the principal axes

Fig. 1 The embedding of elements of SE„n−1… in SO„n…
rame and the characteristic length are introduced.

84 / Vol. 129, AUGUST 2007

ded 06 Aug 2007 to 163.118.202.33. Redistribution subject to ASM
4.1 The Principal Axes Frame. We now consider a finite set
of n displacements �n�2� and seek their magnitudes. In order to
yield a left-invariant metric, we build upon the work of Kazerou-
nian and Rastegar �1� in which approximately bi-invariant metrics
were defined for a prescribed finite rigid body. Here, to avoid
cumbersome volume integrals over the body we utilize a unit
point mass model for the moving body, the rationale being that the
moving frame in the application areas considered has some inher-
ent importance. For example, in robot end-effector applications
the moving frame will often be defined with its origin at the tool
center point. Moreover, in motion synthesis tasks, the moving
frame is often defined with its origin at the point on the moving
body whose motion is critical to the task at hand.

We proceed by determining the position vector of the center of
mass c� and the principal axes frame PF associated with the n
prescribed locations, where a unit point mass is located at the
origin of each location

c� =
1

n�
i=1

n

d� i �2�

where d� i is the translation vector associated with the ith location
�i.e., the origin of the ith location with respect to the fixed frame�.
Next, we define PF with its axes defined as the principal axes of
the inertia tensor �I� of the n point mass system about the centroid
c�. First, we determine the inertia tensor �I� associated with the n
point mass system

�I� = �1��
i=1

n

�d� i�
2 − �

i=1

n

d� id� i
T �3�

where �1� is the 3�3 �spatial� or 2�2 �planar� identity matrix.
Finally, we determine the principal axes frame PF

PF = �v�1 v�2 v�3 c�

0 0 0 1
	 �4�

where v� i are the unit eigenvectors of the inertia tensor �I�. The
directions of the vectors along the principal axes �v� i� are chosen
such that PF is a right-handed system. The center of mass and the
principal axes frame are unique for the mechanical system and
invariant with respect to both the choice of coordinate frames and
the system of units �27,28�. Note that the principal frame is not
dependent on the orientations of the frames at hand—only the
positions of their origins. However, the metric is dependent on the
orientations of the frames.

4.2 Characteristic Length. In order to resolve the unit dis-
parity between translations and rotations we use a characteristic
length to normalize the translational terms in the displacements.
There are three general approaches to selecting a characteristic
length: based upon the body being displaced �1,7�, based upon the
kinematic chain generating the motion �8�, or based upon the mo-
tion task �29,5�. The characteristic length we chose is R=24L /�,
where L is the maximum translational component in the set of
displacements at hand. This formulation is based upon the motion
task and is reported in Refs. �2,16�. This characteristic length is
the radius of the hypersphere that approximates the translational
terms by angular displacements that are �7.5 deg. It was shown
in Ref. �30� that this radius yields an effective balance. Note that
the metric presented here is not dependent upon this particular
choice of characteristic length and that, if so desired, an alterna-
tive formulation may be utilized.

4.3 Step by Step. We now summarize the implementation of
the methodology. For a set of n locations, proceed as follows:

1. Determine PF associated with the n displacements;
2. Determine the relative displacements from PF to each of the
n locations;
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3. Determine the characteristic length R associated with the n
relative displacements and scale the translation terms in each
by 1/R;

4. Compute the elements of SO�3��planar� or SO�4��spatial�
associated with PF and each of the scaled relative displace-
ments using Theorem 3.1; and

5. The magnitude of the ith displacement is defined as the dis-
tance from PF to the ith scaled relative displacement as com-
puted via Eq. �1�. The distance between any two of the n
locations is similarly computed via the application of Eq. �1�
to the scaled relative displacements embedded in SO�3� or
SO�4�.

We note that since the center of mass and PF are invariant with
espect to both the choice of coordinate frames and the system of
nits �27,28�, that the polar decomposition displacement metric is
eft invariant. The subsequent examples illustrate the application
f the above methodology to a finite set of planar or spatial dis-
lacements.

Example 1
Consider the 11 planar locations that define a motion generation

ask proposed by J. Michael McCarthy of U.C. Irvine for the 2002
SME Mechanisms & Robotics Conference and found in Ref.

26�. The 11 �a ,b ,�� locations are listed in Table 1 and shown in
ig. 2 along with the fixed reference frame F where the x axes are
hown in red�dark� and the y axes in green�light�. We proceed as
bove and determine PF

Table 1 Eleven planar locations

o. a b
�

�deg� ��T��

−1.0000 −1.0000 90.0000 0.1237
−1.2390 −0.5529 77.3621 0.3214
−1.4204 0.3232 55.0347 0.8455
−1.1668 1.2858 30.1974 1.4039
−0.5657 1.8871 10.0210 1.8118
−0.0292 1.9547 1.7120 1.9641

0.2632 1.5598 10.0300 1.8109
0.5679 0.9339 30.1974 1.4023
1.0621 0.3645 55.0346 0.8434

0 1.6311 0.0632 77.3620 0.3214
1 2.0000 0.0000 90.0000 0.1350
Fig. 2 The 11 planar locations and PF

ournal of Mechanical Design
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PF = 
0.0067 − 1.0000 0.0094

1.0000 0.0067 0.6199

0 0 1
� �5�

The 11 locations are now determined with respect to PF and the
maximum translational component is found to be 1.4278 and the
associated characteristic length is R=24�1.4278/�=10.9073. Fi-
nally, the magnitude of each of the displacements is computed via
Eq. �1� and listed in Table 1. To illustrate the applicabilility of the
metric to tasks such as motion, synthesis, motion, interpolation,
etc., we show four arbitrary locations that are equidistant to loca-
tion No. 1 in Fig. 3.

6 Example 2
Consider four spatial locations from the rigid-body motion gen-

eration example presented in Ref. �31�. The four locations are
listed in Table 2, and their associated PF is

PF = 

− 0.5692 0.8061 − 0.1617 0.75000

− 0.7807 − 0.5916 − 0.2012 1.5000

− 0.2578 0.0117 0.9661 0.4375

0 0 0 1
� �6�

Next, the four locations with respect to the principal frame are
determined. The maximum translational component is found to be
1.7108 and the associated characteristic length is R=13.0695. Fi-
nally, the magnitude of each of the displacements is listed in Table
2. Note that the magnitude of the first location is not zero because
the relative displacement from PF to the first location is noniden-
tity.

Fig. 3 The fixed frame and four locations equidistant to loca-
tion No. 1

Table 2 Four spatial locations

No. x y z
�

�deg�
�

�deg�
	

�deg� ��T��

1 0.00 0.00 0.00 0.0 0.0 0.0 2.5281
2 0.00 1.00 0.25 15.0 15.0 0.0 2.5701
3 1.00 2.00 0.50 45.0 60.0 0.0 2.7953
4 2.00 3.00 1.00 45.0 80.0 0.0 2.8057
AUGUST 2007, Vol. 129 / 885
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Conclusions
We discussed a methodology for measuring distances on a finite

et of elements of SE�n�. This technique is based on embedding
E�n� into SO�n+1� via either the polar or the singular value
ecompositions of the homogeneous transform representation of
E�n�. A bi-invariant metric on SO�n+1� is then used to measure

he distance between any two displacements SE�n�. The resulting
istance measure was shown to be left invariant. A detailed meth-
dology for applying this technique was presented and illustrated
y two examples.
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